

Why do RNASeq?

- Gene Expression Profiling
 - Reference (Annotated)
 - De Novo (discovery)
- Variant Analysis or Discovery
- Pathogen ID

Methods

- What are my research goals?
- What is my RNA quality?
- How many samples do I have?
- How much RNA do I have?

Why Choose Lexogen 3'RNA Seq?

High Throughput: BRC Service requires >32 samples

Experimental design tolerant of dropouts

The information you are interested in is at the 3' end of the RNA strand

Tolerant of:

- · Input concentration diversity
- RNA quality diversity

Prep Chemistry

Why Choose Truseq RNA

Flexible:

- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- RNA Integrity: Intact OR Degraded
- Sample Number: <384

Directional Or Non-Directional

Highly Supported

Chemistry

Why Choose Truseq RNA

Flexible:

- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- RNA Integrity: Intact OR Degraded
- Sample Number: <384

Directional Or Non-Directional

Highly Supported

Chemistry

Why Choose Truseq RNA

Flexible:

- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- · RNA Integrity: Intact OR Degraded
- Sample Number: <384

Directional Or Non-Directional

Highly Supported

Chemistry

Why choose NEB Next Ultra II

Flexible:

- Input type:
 - Total RNA
 - Ribosomal Depleted RNA
 - Poly A Selected RNA
- Input Concentration: 1000-100ng
- RNA Integrity: Intact OR Degraded
- Sample Number: <384

Fully Supported

Directional Or Non-Directional

Modular

Prep Chemistry

Decision Tree

Keep any RNA fragment with a Poly A stretch in it

Keep any RNA fragment with a Poly A stretch in it

Keep any RNA fragment with a Poly A stretch in it

Keep any RNA fragment with a Poly A stretch in it

Keep any RNA fragment with a Poly A stretch in it

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA
- If your RNA is intact:
 - RQN is >7

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA
- If your RNA is intact:
 - RQN is >7

- If your research question allows for Poly A selection
 - Bacteria don't have a Poly A tail
 - If you are looking for RNA's that don't have a Poly A tail, ex: LNC RNA
- If your RNA is intact:
 - RQN is >7
- If you don't care about 3' bias

What is Ribosomal Depletion

ssDNA probes are organism specific

ssDNA probes are organism specific

ONLY the hybridized RNA is degraded

- ssDNA probes are organism specific
- ONLY the hybridized RNA is degraded

ssDNA probes are organism specific

ONLY the hybridized RNA is degraded

Housekeeping RNAs

If your RNA is degraded: RQN <7

If your RNA is degraded: RQN <7

If your RNA is degraded: RQN <7

If your organism is not compatable with Poly A

If your RNA is degraded: RQN <7

If your organism is not compatable with Poly A

If you are looking for RNA's that don't have a poly A tail

Why choose Directional?

- More information
 - Which strand your RNA is being transcribed from
 - More accurate count of genes in differential expression analysis

Why choose Directional?

- More information
 - Which strand your RNA is being transcribed from
 - More accurate count of genes in differential expression analysis

Why choose Nondirectional?

If you have <10ng of total RNA

Why choose Directional?

- More information
 - Which strand your RNA is being transcribed from
 - More accurate count of genes in differential expression analysis

Why choose Nondirectional?

If you have <10ng of total RNA

Why choose Directional?

- More information
 - Which strand your RNA is being transcribed from
 - More accurate count of genes in differential expression analysis

Why choose Nondirectional?

If you have <10ng of total RNA

Ribo Zero from illumina has been discontinued!

Ribo Zero from illumina has been discontinued!

Why choose Small RNA?

Analyzing microRNAs, siRNAs, piRNAs

- Selecting for 20-30nt small RNAs
- Minimun input of 100ng of cellular Total RNA

* For RNA Extraction: make sure you use a method that keeps small RNA's * What is small RNA

Prep Chemistry

What is small RNA

- Type of ncRNA
- Small, 25-250NT's
- Involved in regulating translation of target RNA's

What is small RNA

- Type of ncRNA
- Small, 25-250NT's
- Involved in regulating translation of target RNA's

