

WHAT WOULD TREX DO?

From Experimental Design to Analysis, the TREX Approach

EXPERIMENTAL DESIGN

- What are my research goals?
- Where are my samples coming from?
 - How much RNA will I have?
 - What is the expected quality of that RNA?
- How many replicates to I need?
 - What is the data analysis going to look like?

n? FFPE Clinical Fresh Tissue/Cells FACS Sorted Cells

GENE EXPRESSION ANALYSIS

Control

Gene Expression Variation

Treatment

Gene Expression Variation

EXPERIMENTAL DESIGN

- What are my research goals?
- Where are my samples coming from?
 - How much RNA will I have?
 - What is the expected quality of that RNA?
- How many replicates to I need?
 - What is the data analysis going to look like?
- How many samples do I need?
- How much money do I have?

Biological > Technical

SAMPLE PREPARATION/ EXTRACTION

- How did you extract your RNA?
- What does the RNA QC look like?
 - Nanodrop: looks at chemical impurities and quantity
 - Fragment Analyzer: Looks at RNA integrity
 - Qubit: quantity of material

NANODROP

- Spectrophotometer
 - Quantity > 20ng/uL
 - Contaminants
 - Salts
 - Proteins
 - Phenolics
 - Carbohydrates/Sugars
 - 260/230 Ratio: ~2-2.2
 - 260/280 Ratio: ~1.8-2

FRAGMENT ANALYZER

QUBIT FLUOROMETER

- RNA Quantity < 20
- Can also detect DNA contamination
- Free to use in Genomics
 Core

Cornell University RNASEQ LIBRARY PREP **NEB Next Ultra II RNASeq**

ILLUMINA SEQUENCING

ILLUMINA SEQUENCING

ILLUMINA SEQUENCING

SEQUENCING

- What Read Length do you want?
 - Our standard is 75bp
 - smRNA ideal is 50bp
- SNP detection: Paired End Transcriptome Assembly Longest read possible How many reads do you need?
 - Our standard: 20m reads
 - smRNA standard: 10m reads
 - Isoform detection: much higher

*--quantMode FOR RNA SEQ READS

General Statistics

Gopy table Showing $^{12}/_{12}$ rows and $^{2}/_{2}$ columns.	
Sample Name	% Aligned -
RQN_10	88.7%
RQN_9.6_2	88.3%
RQN_8.3	87.7%
RQN_7.6	87.4%
RQN_8.6	87.3%
RQN_9.1	87.1%
RQN_9.6_1	85.0%
RQN_7.4	83.0%
RQN_9.5	80.2%
RQN_7.1_1	77.3%
RQN_6.8	70.7%
RQN_7.1_2	68.1%

STAR Gene Counts

Created with MultiQC

Diagnostic Plots

- BioAnalyzer Trace;
- MultiQC Report (Alignment Statistics);
- GeneBody Coverage;

- I Principal Components Analysis;
- Hierarchical Clustering;

Overall quality

Biological Signal

Diagnostic Plots

- BioAnalyzer Trace;
- GeneBody Coverage;
- Principal Components Analysis;
- Hierarchical Clustering;

GeneBody Coverage;

Gene body percentile (5'->3')

Coverage

Gene body percentile (5'->3')

Diagnostic Plots

- BioAnalyzer Trace;
- GeneBody Coverage;
- Principal Components Analysis;
- Hierarchical Clustering;

• Principal Components Analysis;

Color = Treatment Group

Multiple data points with same color indicate biological reps

Principal Component Analysis - Axes 1 and 2

PC1 (58.24%)

Diagnostic Plots

- BioAnalyzer Trace;
- GeneBody Coverage;
- Principal Components Analysis;
- Hierarchical Clustering;

• Hierarchical Clustering;

Bottom-up approach

Cluster dendrogram

Method: Euclidean distance - Ward criterion hclust (*, "ward.D")

🗯 Copy table	Showing $^{12}/_{12}$ rows and $^{2}/_{2}$ columns.				
Sample Name)	% Aligned -		M Aligned	
RQN_10		88.7%		32.9	
RQN_9.6_2		88.3%		29.6	
RQN_8.3		87.7%		31.6	
RQN_7.6		87.4%		32.1	
RQN_8.6		87.3%		20.9	
RQN_9.1		87.1%	87.1%		
RQN_9.6_1		85.0%		32.0	
RQN_7.4		83.0%		29.9	
RQN_9.5		80.2%		27.7	
RQN_7.1_1		77.3%		26.6	
RQN_6.8		70.7%			
RQN_7.1_2		68.1%		23.9	

STAR Gene Counts

Created with MultiQC

Case Study 1

Borderline OKAY sample

Size (nt)

Principal Component Analysis - Axes 1 and 2

🗯 Copy table	Showing $^{12}/_{12}$ rows and $^{2}/_{2}$	owing ¹² / ₁₂ rows and ² / ₂ columns.				
Sample Name		% Aligned -		M Aligned		
RQN_10		88.7%		32.9		
RQN_9.6_2		88.3%		29.6		
RQN_8.3		87.7%		31.6		
RQN_7.6		87.4%		32.1		
RQN_8.6		87.3%		20.9		
RQN_9.1		87.1%		28.8		
RQN_9.6_1		85.0%		32.0		
RQN_7.4		83.0%		29.9		
RQN_9.5		80.2%		27.7		
RQN_7.1_1		77.3%		26.6		
RQN_6.8		70.7%		24.8		
RQN_7.1_2		68.1%		23.9		

L	6.8
L	7.1
L_	9.6
L_	7.6
L.,	7.1
L_	7.4
L	9.5
L	9.1
L	10
L_	9.6
L_	8.6
L	8.3
-	

Name	% Aligned -	M Aligned	
	88.7%	32.9	
_2	88.3%	29.6	
	87.7%	31.6	
	87.4%	32.1	
	87.3%	20.9	
	87.1%	28.8	
_1	85.0%	32.0	
	83.0%	29.9	
	80.2%	27.7	
_1	77.3%	26.6	
	70.7%	24.8	
_2	68.1%	23.9	

Showing $^{12}/_{12}$ rows and $^{2}/_{2}$ columns.

STAR Gene Counts

🗳 Copy table	Showing $^{12}/_{12}$ rows and $^{2}/_{2}$ columns.				
Sample Name		% Aligned -		M Alię	
RQN_10		88.7%		32.9	
RQN_9.6_2		88.3%		29.6	
RQN_8.3		87.7%		31.6	
RQN_7.6		87.4%		32.1	
RQN_8.6		87.3%		20.9	
RQN_9.1		87.1%		28.8	
RQN_9.6_1		85.0%		32.0	
RQN_7.4		83.0%		29.9	
RQN_9.5		80.2%		27.7	
RQN_7.1_1		77.3%		26.6	
RQN_6.8		70.7%		24.8	
RQN_7.1_2		68.1%		23.9	

Principal Component Analysis - Axes 1 and 2

Case Study 2

Gene body percentile (5'->3')

PC1 (55.52%)

Summary Report

TREX Analysis Reports

- MultiQC Alignment Summary;
- Data QC Report;
- Raw Count Table;
- DE Genes Analysis Excel File;

Next Steps...

- DE Assessment of candidate genes;
- DE genes (Panther/DAVID); GO-Term and Pathway Enrichment;
- Gene Set Enrichment Analysis (Broad);
- Ingenuity Pathway Analysis (IPA);

Thank You for Listening !

Contact Info:http://rnaseqcore.vet.cornell.edu/E-mail List Serve:TREX-GENEREG-LJen Grenier:jgrenier@cornell.eduChristine Butler:cab18@cornell.eduAnn Tate:aef93@cornell.eduFaraz Ahmed:fahmed@cornell.edu

